Spectra is designed to calculate a specified number (k
) of eigenvalues
of a large square matrix (A
). Usually k
is much smaller than the size of matrix
(n
), so that only a few eigenvalues and eigenvectors are computed, which
in general is more efficient than calculating the whole spectral decomposition.
Users can choose eigenvalue selection rules to pick up the eigenvalues of interest,
such as the largest k
eigenvalues, or eigenvalues with largest real parts,
etc.
To use the eigen solvers in this library, the user does not need to directly
provide the whole matrix, but instead, the algorithm only requires certain operations
defined on A
, and in the basic setting, it is simply the matrix-vector
multiplication. Therefore, if the matrix-vector product A * x
can be computed
efficiently, which is the case when A
is sparse, Spectra
will be very powerful for large scale eigenvalue problems.
There are two major steps to use the Spectra library:
y = A * x
or the shift-solve operation
y = inv(A - σ * I) * x
. Spectra has defined a number of
helper classes to quickly create such operations from a matrix object.
See the documentation of
DenseGenMatProd,
DenseSymShiftSolve, etc.Below is a list of the available eigen solvers in Spectra:
Below is an example that demonstrates the use of the eigen solver for symmetric matrices.
#include <Eigen/Core>
#include <Spectra/SymEigsSolver.h>
// <Spectra/MatOp/DenseSymMatProd.h> is implicitly included
#include <iostream>
using namespace Spectra;
int main()
{
// We are going to calculate the eigenvalues of M
Eigen::MatrixXd A = Eigen::MatrixXd::Random(10, 10);
Eigen::MatrixXd M = A + A.transpose();
// Construct matrix operation object using the wrapper class DenseSymMatProd
DenseSymMatProd<double> op(M);
// Construct eigen solver object, requesting the largest three eigenvalues
SymEigsSolver<DenseSymMatProd<double>> eigs(op, 3, 6);
// Initialize and compute
eigs.init();
int nconv = eigs.compute(SortRule::LargestAlge);
// Retrieve results
Eigen::VectorXd evalues;
if(eigs.info() == CompInfo::Successful)
evalues = eigs.eigenvalues();
std::cout << "Eigenvalues found:\n" << evalues << std::endl;
return 0;
}
Sparse matrix is supported via classes such as SparseGenMatProd
and SparseSymMatProd
.
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <Spectra/GenEigsSolver.h>
#include <Spectra/MatOp/SparseGenMatProd.h>
#include <iostream>
using namespace Spectra;
int main()
{
// A band matrix with 1 on the main diagonal, 2 on the below-main subdiagonal,
// and 3 on the above-main subdiagonal
const int n = 10;
Eigen::SparseMatrix<double> M(n, n);
M.reserve(Eigen::VectorXi::Constant(n, 3));
for(int i = 0; i < n; i++)
{
M.insert(i, i) = 1.0;
if(i > 0)
M.insert(i - 1, i) = 3.0;
if(i < n - 1)
M.insert(i + 1, i) = 2.0;
}
// Construct matrix operation object using the wrapper class SparseGenMatProd
SparseGenMatProd<double> op(M);
// Construct eigen solver object, requesting the largest three eigenvalues
GenEigsSolver<SparseGenMatProd<double>> eigs(op, 3, 6);
// Initialize and compute
eigs.init();
int nconv = eigs.compute(SortRule::LargestMagn);
// Retrieve results
Eigen::VectorXcd evalues;
if(eigs.info() == CompInfo::Successful)
evalues = eigs.eigenvalues();
std::cout << "Eigenvalues found:\n" << evalues << std::endl;
return 0;
}
And here is an example for user-supplied matrix operation class.
#include <Eigen/Core>
#include <Spectra/SymEigsSolver.h>
#include <iostream>
using namespace Spectra;
// M = diag(1, 2, ..., 10)
class MyDiagonalTen
{
public:
using Scalar = double; // A typedef named "Scalar" is required
int rows() const { return 10; }
int cols() const { return 10; }
// y_out = M * x_in
void perform_op(const double *x_in, double *y_out) const
{
for(int i = 0; i < rows(); i++)
{
y_out[i] = x_in[i] * (i + 1);
}
}
};
int main()
{
MyDiagonalTen op;
SymEigsSolver<MyDiagonalTen> eigs(op, 3, 6);
eigs.init();
eigs.compute(SortRule::LargestAlge);
if(eigs.info() == CompInfo::Successful)
{
Eigen::VectorXd evalues = eigs.eigenvalues();
std::cout << "Eigenvalues found:\n" << evalues << std::endl;
}
return 0;
}
To compile and run these examples, simply download the source code of Spectra and Eigen, and let the compiler know about their paths. For example:
g++ -I/path/to/eigen -I/path/to/spectra/include -O2 example.cpp