Spectra  1.0.1
Header-only C++ Library for Large Scale Eigenvalue Problems
Spectra::GenEigsComplexShiftSolver< OpType > Class Template Reference

#include <Spectra/GenEigsComplexShiftSolver.h>

Inheritance diagram for Spectra::GenEigsComplexShiftSolver< OpType >:
Spectra::GenEigsBase< DenseGenComplexShiftSolve< double >, IdentityBOp >

Public Member Functions

 GenEigsComplexShiftSolver (OpType &op, Index nev, Index ncv, const Scalar &sigmar, const Scalar &sigmai)
- Public Member Functions inherited from Spectra::GenEigsBase< DenseGenComplexShiftSolve< double >, IdentityBOp >
void init (const Scalar *init_resid)
void init ()
Index compute (SortRule selection=SortRule::LargestMagn, Index maxit=1000, Scalar tol=1e-10, SortRule sorting=SortRule::LargestMagn)
CompInfo info () const
Index num_iterations () const
Index num_operations () const
ComplexVector eigenvalues () const
ComplexMatrix eigenvectors (Index nvec) const
ComplexMatrix eigenvectors () const

Detailed Description

template<typename OpType = DenseGenComplexShiftSolve<double>>
class Spectra::GenEigsComplexShiftSolver< OpType >

This class implements the eigen solver for general real matrices with a complex shift value in the shift-and-invert mode. The background knowledge of the shift-and-invert mode can be found in the documentation of the SymEigsShiftSolver class.

Template Parameters
OpTypeThe name of the matrix operation class. Users could either use the wrapper classes such as DenseGenComplexShiftSolve and SparseGenComplexShiftSolve, or define their own that implements the type definition Scalar and all the public member functions as in DenseGenComplexShiftSolve.

Definition at line 33 of file GenEigsComplexShiftSolver.h.

Constructor & Destructor Documentation

◆ GenEigsComplexShiftSolver()

template<typename OpType = DenseGenComplexShiftSolve<double>>
Spectra::GenEigsComplexShiftSolver< OpType >::GenEigsComplexShiftSolver ( OpType &  op,
Index  nev,
Index  ncv,
const Scalar &  sigmar,
const Scalar &  sigmai 

Constructor to create a eigen solver object using the shift-and-invert mode.

opThe matrix operation object that implements the complex shift-solve operation of \(A\): calculating \(\mathrm{Re}\{(A-\sigma I)^{-1}v\}\) for any vector \(v\). Users could either create the object from the wrapper class such as DenseGenComplexShiftSolve, or define their own that implements all the public members as in DenseGenComplexShiftSolve.
nevNumber of eigenvalues requested. This should satisfy \(1\le nev \le n-2\), where \(n\) is the size of matrix.
ncvParameter that controls the convergence speed of the algorithm. Typically a larger ncv means faster convergence, but it may also result in greater memory use and more matrix operations in each iteration. This parameter must satisfy \(nev+2 \le ncv \le n\), and is advised to take \(ncv \ge 2\cdot nev + 1\).
sigmarThe real part of the shift.
sigmaiThe imaginary part of the shift.

Definition at line 149 of file GenEigsComplexShiftSolver.h.

The documentation for this class was generated from the following file: